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Decision-Making and Continual Learning

Where should I 
direct data 

collection effort?

How do I react to 
changes in a 

market?

How do I find 
promising candidates 

in a large search 
space?

How do I react to 
changes in my 
environment?

Active Learning Contextual Bandits Black-Box Optimization Adaptive Control



Decision Making and Continual Learning

● ML research is often evaluated on static benchmarks.

● Many motivating applications are online decision-making problems.

● Decisions must be timely, and made with incomplete information.

● When new information is available it should be leveraged immediately.



Decision-Making and Continual Learning

Continual Learning is characterized by:

● A vague/unknown range of possible observations.

● A datastream that is not assumed to be I.I.D.

● Transient observations (no training on old data).
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I. Intro to Gaussian Processes



Gaussian Process Regression
Some Definitions



GP Inference

● Computing the marginal log-likelihood (MLL) is naively O(n3).

● Krylov subspace methods can get the cost down to O(kn2).

● Distributed computation can scale up to millions of points in the batch setting1.
1. Wang et al (2020)



Querying a GP Posterior

● After an update to the GP hyperparameters a query costs O(n3). 

● Again, Krylov subspace methods can get the cost down to O(kn2).



II. GP Inference in the 
   Streaming Setting



Online Learning

Is there a way to reuse 
computation from one 
timestep to the next?

Problem

To learn and query as we do in 
the batch setting, we have to 
discard previous work. 



Conditioning on New Observations

Rank-one updates cost O(n2) naively, (e.g. Schur complement update, rank-one 
Cholesky update), at best O(kn) with low-rank approximate root decompositions.



Previous Work

● Sparse GPs in the batch setting: Silverman (1985), Snelson & 
Ghahramani (2006), Hensman et al (2013), Wilson et al (2015).

● Early work on continual learning with sparse GPs: Csato & Opper 
(2002), Girard et al (2002).

● Recent work on continual learning with sparse GPs: Cheng & Boots 
(2016), Bui et al (2017), Moreno-Muños et al (2019).



Subset of Regressors

Introduce inducing inputs z and inducing function values u,

Introduce an approximate kernel matrix,

In general, z can be a subset of the data or pseudo-inputs optimized 
through the approximate MLL or the variational ELBO.



Subset of Regressors

● Reduces complexity to O(m2n + m3) (Silverman 1985), can be 
combined with SVI (Hensman et al 2013).

● KXU depends on the kernel hyperparameters.



III. Kernel Interpolation for
Continual Learning



Structured Kernel Interpolation

● Fixing z to a grid (inducing Toeplitz structure on KUU ), and relying on local cubic interpolation 
(inducing sparsity on W) reduces complexity to O(n + m log(m)) (Wilson & Nickisch 2015). 

● Crucially, W does not depend on the kernel hyperparameters.



Structured Kernel Interpolation

Toeplitz Sparse



Woodbury Matrix Identity



Woodbury Matrix Identity

Common sparse GP trick: turn a nxn system of equations into a mxm system.



Learning and Querying the GP

cached m x m m x m m x mcached

cachedm x m m x m 



Learning and Querying the GP

In the formulation on the last slide, all terms directly involving the data are 
linear with const. memory footprint and no dependence on the kernel.

We are not summarizing the past observations (as in Bui et al 2017), we 
are performing exact inference with an approximate kernel. 



A Closer Look

But wait...

So how does one update M in constant time?



A Closer Look

L is rank k <= m

Let’s start with a root decomposition of WTW.



A Closer Look

Updating the root decomposition



Summary
Woodbury-Inverse SKI

O(mk2 + k)

O(m)
O(1)

O(m2k)

O(mk)



Conventional GP Deep Ensemble WISKI GP

Parameter Inference O(N3) O(N) O(1)

Condition on New Data O(N2) O(N) O(1)

Query Test Point O(N2) O(1) O(1)

Data Storage O(N) O(N) O(1)

Computational Complexity

Here we are focusing on the complexity in terms of N. Just as the computational cost of a deep 
ensemble depends on the number, width and depth of the components, so does the cost of a 
WISKI model depend on design choices like the number of inducing points.



Handling High-Dimensional Inputs

● SKI treats W as a sparse, deterministic matrix.

● For best results, you need large m, which is usually accommodated by 
placing z on a regular grid, incurring O(md) memory cost.

● For any problem with d > 2, we learned a linear projection.

● The projection is learned through the MLL, but one must assume that the 
projections of previous observations are fixed.



IV. Empirical Evaluation



Constant Runtime… Without VI!

Previous work uses either 
a sliding window or some 
summary of previous 
data. WISKI is just as fast, 
and is analytically 
equivalent to the batch 
model.



UCI Regression

First some standard regression benchmarks,



Classification

● So far we’ve assumed a Gaussian likelihood… what if you want to do 
classification?

● Gaussian Process Dirichlet classification turns classification into a 
heteroskedastic regression problem (Milios et al 2018).

● WISKI is easily extensible to heteroskedastic regression.



Classification

GP Dirichlet classification with exact and SKI kernels, compared to a 
standard variational GP classification model with a softmax likelihood.



Classification
Visualizing a WISKI GP classifier on non-I.I.D. observations.



Bayesian Optimization

Results on synthetic 
objective functions. 
Even in the setting 
where an exact kernel is 
easily tractable, WISKI 
performs competitively. 



Active Learning

Large-scale active 
learning with WISKI on a 
dataset from the 
Malaria Global Atlas. 
Eliminating the 
intractable scaling of 
online inference with 
exact kernels opens up 
new possibilities. 



Discussion

● We haven’t exploited the algebraic structure of KUU or the sparsity of W. Is 
there induced structure in WTW that we can use?

● Conventional applications of Bayesian optimization or active learning 
have tended to focus on the small-data regime. Are there impactful 
applications that have been heretofore intractable?

● Unsupervised learning may be a good way to initialize low-dimensional 
feature representations for a WISKI model.
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