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Motivation

We often need to update our models and make decisions as
we are acquiring data in an online (streaming) fashion.
Predictive distributions are especially useful for online
decision making, and are a hallmark of Gaussian process
models (used in Bayesian optimization, RL, active learning).
But updating the predictive distributions are computationally
quite expensive.

Contribution:
- We propose WISKI (Woodbury interpolation with SKI)
& that uses SKI kernel matrices to enable exact GP
online updates in time constant in the number of data
points.

Background

- GP predictive equations require at least (’)(Nz) space and
computation (with iterative methods)
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Adding a new data point expands the kernel matrix, costing
at least O(IV) time
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Time complexities: M is the # of inducing points
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Methodology

Through a careful combination of caching and structured kernel interpolation
(SKI), we enable online updates in constant time with respect to the number of
data points n, while retaining exact inference.
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We use Woodbury’s matrix identity to invert the SKI kernel matrix and convert it

into only rank one updates of size m.
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WISKI has constant time
inference like variational
methods, but unlike

traditional exact GPs.
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Finally, WISKI makes it
uniquely possible to | e
find an optimal set of

new locations for

experimental design in

constant time. e T
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