Background:

- We assume features of neural network are similar across tasks.

- How do we re-use them in an efficient and closed form way
beyond simple fine-tuning?

Description:

- Infinitely wide neural networks produce useful kernel functions,
e.g. the neural tangent kernel (NTK, Jacot et al, ’18).
- In the finite width regime, we can use the NTK at finite width of a
trained network, so that the kernel functlon becomes

ko(z,a") = Jo(z) " Jp(a')

- Train one model with parameters = and re-use these parameters
across tasks.

ft ~ gp(:ut? ke(mta CC;))

- Computations with the Jacobian matrix are expensive, so we
only work with Jacobian vector and vector Jacobian products:

Jo(x)v v Jy(x)

- Pearlmutter, '94.
- Then, we use CG enabled GP methods (Gardner, et al, ’18).

- Computation is exact in regression setting and we use
variational inference in weight space (as a linear model) for
classification.

fe(zf) ~N (K o xx+021) Yt
Ka:*,a:* T K:B*,:B(Ka:,a: + 021)_1Kx,x*)

- For regression, we can flip back to parameter space and use the
Fisher information matrix.
- Computation is extremely efficient because we derived a
new (approximate) Fisher vector product.

Vo KL(p(y10)|[p(y'0")0-=01 o = €F(8)v + O(€*|v]|)
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Approximate Fisher vector products are 10x faster than
standard ones while being very accurate.
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We perform transfer learning in function space by linearizing a
trained neural network and predicting using the resulting
Gaussian process.
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The finite NTK has well-calibrated predictive distributions.
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The finite NTK outperforms fine-tuning on regression tasks.
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The finite NTK performs less well transferring deep models
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The finite NTK also performs well on CIFAR-10.
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