Background:

- We assume features of neural network are similar across tasks.

- How do we re-use them in an efficient and closed form way
beyond simple fine-tuning?

Description:

- Infinitely wide neural networks produce useful kernel functions,
e.g. the neural tangent kernel (NTK, Jacot et al, ’18).
- In the finite width regime, we can use the NTK at finite width of a
trained network, so that the kernel functlon becomes

ko(z,a") = Jo(z) " Jp(a')

- Train one model with parameters = and re-use these parameters
across tasks.

ft ~ gp(:ut? ke(mta CC;))

- Computations with the Jacobian matrix are expensive, so we
only work with Jacobian vector and vector Jacobian products:

Jo(x)v v Jy(x)

- Pearlmutter, '94.
- Then, we use CG enabled GP methods (Gardner, et al, ’18).

- Computation is exact in regression setting and we use
variational inference in weight space (as a linear model) for
classification.

fe(zf) ~N (K o xx+021) Yt
Ka:*,a:* T K:B*,:B(Ka:,a: + 021)_1Kx,x*)

- For regression, we can flip back to parameter space and use the
Fisher information matrix.
- Computation is extremely efficient because we derived a
new (approximate) Fisher vector product.

Vo KL(p(y10)|[p(y'0")0-=01 o = €F(8)v + O(€*|v]|)

10 mmm AG
s D

Time per MVM (s)

Approximate Fisher vector products are 10x faster than
standard ones while being very accurate.

Fast Adaptation with Linearized
Neural Networks

Wesley Maddox Shuai Tang Pablo Moreno

Andrew Gordon Wilson Andreas Damianou

Paper Link: https://arxiv.org/abs/2103.01439
Code: https://qgithub.com/amzn/xfer/tree/master/finite ntk

We perform transfer learning in function space by linearizing a
trained neural network and predicting using the resulting
Gaussian process.

(?’ NEW YORK UNIVERSITY

UCSan Diego
amazon com Cognitive Science S ’ Ats
W . 1 STRA BB DA I
Experiments
25
0.0 / .
>\72.5 / \
N
—5.0
-6 —4 -2 0 2 4 6
X
— No Fine-Tuning = Finite NTK —— Ground Truth RBF GP —— ABLR
® Train Data V Adaptation Data

The finite NTK has well-calibrated predictive distributions.

Olivetti faces

Malaria incidence

0.045

0.040 —#— Finite NTK 0.014
—f— Fine-Tuning Last Layer 0.013
—— Fine-Tuning 0.012

D 0.011

0.035

L1 0.030
n
S 0.025
1 0.020
I

5 0.010

= 0.015 F 0.009
—— Finite NTK
—&— No Fine-Tuning

—f— Fine-Tuning Last Layer

0.010 0.008

0.005 0.007

0.006
1000 2000 3000 4000 5000 10° 10") 10°
Number of Adaptation Points Number of Adaptation Points

0.000

The finite NTK outperforms fine-tuning on regression tasks.

C|FAR 10 to STL-10
0.100
m°°75

O 050

0.025

LL
o o =
(2] oo o
Accuracy
o
0

20 40 60 100 40 40 60 80 100
Depth Depth Depth

—+— Linearized NN —&— Finite NTK —¥— Full Net
The finite NTK performs less well transferring deep models

CIFAR-10
0.950 0.05
s _0s2s 0.04
& 0.900 w
- 3 Q 0.03
= 03 £ 0875
0.02
0.850
0.2
20 40 60 8 100 20 40 60 80 100 20 40 60 80 100
Depth Depth Depth
—+— Linearized NN —%— Finite NTK —f— Full Net
The finite NTK also performs well on CIFAR-10.

References:

e Jacot et al, ’18. Neural Tangent Kernel, Neurips.
e Pearlmutter, '94. Fast Hessian Viector Products, Neural computation.
e Gardner, et al, ’18. Gpytorch. NeurlPS.

https://arxiv.org/abs/2103.01439
https://github.com/amzn/xfer/tree/master/finite_ntk

