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STRUCTURE

» Motivation
» Intro to Bayesian Inference
» Approximate Inference

» Variational Inference

» Laplace Approximations

» MCMC

» Loss-Geometry Inspired Methods (our work)



MOTIVATION

Figure 1: This stylish pullover is a great way to stay warm this winter, whether in the office or on-the-go. It features a stay-dry
microfleece lining, a modern fit, and adversarial patterns the evade most common object detectors. In this demonstration, the
YOLOV2 detector is evaded using a pattern trained on the COCO dataset with a carefully constructed objective.
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DEEP LEARNING SUCCESS
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UNCERTAINTY IN DEEP LEARNING

Automated diagnosis: human-in-the-loop

- &‘_}@
f

uncertainty
test (e.g. Opred; Hpred)

ypred /
Probabilistic
Model

"Benchmarking Bayesian Deep Learning with Diabetic Retinopathy Diagnosis" by Angelos Filos et al.
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CALIBRATION

confidence  prediction
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"Benchmarking Bayesian Deep Learning with Diabetic Retinopathy Diagnosis"” by Angelos Filos et al.
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CALIBRATION

confidence prediction correct
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UNCERTAINTY: OVERCONFIDENCE IN NEURAL NETWORKS

» p(y|x) should represent probabilities of belonging to a class

» Neural networks are often over-confident in their predictions

confidence prediction

> 99.5%

health
* 0.5% /

correct

X
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EXPECTED CALIBRATION ERROR (ECE)

ECE is the expected difference between model’s confidence and its
accuracy

Unecal. - CIFAR-100 Temp. Scale - CIFAR-100
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confidence confidence

"On Calibration of Modern Neural Networks" by Chuan Guo, Geoff Pleiss, Yu Sun and Kilian Q.
Weinberger
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BAYESIAN INFERENCE:
A QUICK REVIEW
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BAYESIAN INFERENCE

» Likelihood p(D|0) = p(y|f(x;0))

» Prior p(0)
» Possibly implicit to the training method
| p(D[0)p(6)
» Posterior p(0|D) =
o) =)

» Inference (Bayesian model averaging)

p(y™|D) = Epeoip)p(y™10)

12

~ q(0|D)

K
Z "16x)

O, ~ q(0|D)
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BAYESIAN MACHINE LEARNING

Consider a simple linear regression problem:

y=wz+e €~N(0,o?)
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BAYESIAN MACHINE LEARNING

Standard linear regression:

N N
1
mg.)(;IOgN(yilwxia 0%) min — ;(yi — wz;)’

Loss
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BAYESIAN MACHINE LEARNING

Standard linear regression:

mnglogN(yi|wxi,a2) — mm—

||Mz

We want to model uncertainty over parameters of the model

- ’U}CEZ

Loss

15
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BAYESIAN LEARNING

Step 1: introduce a prior distribution p(w) over parameters

16
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BAYESIAN LEARNING

Step 2: Compute posterior p(w|D) using Bayes rule

p(D|w)p(w)
p(D)

p(w|D) =

posterior
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BAYESIAN LEARNING: POSTERIOR CONTRACTION (1)

p(D|w)p(w)

p(w|D) = (D)

posterior
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BAYESIAN LEARNING: POSTERIOR CONTRACTION (2)

p(D]w)p(w)

p(w|D) = (D)

posterior 15 | 3
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BAYESIAN LEARNING: POSTERIOR CONTRACTION (3)

What happens if we have more parameters than data points???

Low Curvature Differences

Modified Decision Boundary

Theorem (Function-Space Homogeneity in Linear Mod-
els). Let ® = ®(x) € R"** be a feature map of n data
observations, x, with n < k and assign isotropic prior
B~ N (0, So = a?I},) for parameters 3 € R¥. The mini-
mal eigenvectors of the Hessian define a k — n dimensional
subspace in which parameters can be perturbed without
changing the training predictions in function-space.

Maddox, Benton, & Wilson, in preparation
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High Curvature Differences
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Will revisit these results later....

20
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BAYESIAN MODEL AVERAGING

» We combine aleatoric and epistemic uncertainties via BMA:

p(y*|e*, D) = / p(y*)*, w)p(w| D)dw

w

> Ignoring the uncertainty in the posterior over w leads to overconfident
predictions
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BAYESIAN LEARNING: TWO TYPES OF UNCERTAINTY

Epistemic Uncertainty

Epistemic uncertainty is our
uncertainty over the model

» Grows with  because
uncertainty in w is multiplied by x

X
Aleatoric Uncertainty

Aleatoric uncertainty is our
uncertainty over the data for a
fixed model, e.g. noise.
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BAYESIAN LEARNING: BAYESIAN MODEL AVERAGING

Aleatoric Uncertainty

Epistemic Uncertainty

X Predictive Uncertainty
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BAYESIAN LEARNING: TWO TYPES OF UNCERTAINTY

Epistemic uncertainty: non-linear model

24
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BAYESIAN DEEP LEARNING

> In Bayesian deep learning we model posterior distribution over the
weights of neural networks

» In theory, leads to better predictions and well-calibrated uncertainty

Standard DNN Bayesian DNN

"Weight Uncertainty in Neural Networks" by Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
Daan Wierstra
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BAYESIAN DEEP LEARNING: CHALLENGES

Bayesian inference for deep neural networks is extremely challenging
» Posterior is intractable

» Millions of parameters

> Large datasets

» Unclear which priors to use

o) — PPwpw)  p(Djw)p(w)
p( ‘D) p(D) fw,p(D|w’)p(w’)dw’

26



BAYESIAN NEURAL NETWORKS: A TUTORIAL 27

BAYESIAN DEEP LEARNING: CHALLENGES

Bayesian inference for deep neural networks is extremely challenging

» Posterior is intractable Is the likelihood correct?
» Millions of parameters What do these parameters mean?
) Large datasets Can we run MCMC for 1 million steps on ImageNet??
» Unclear which priors to use Is the prior correct?
p(D|w)p(w) p(D|w)p(w)
p(w|D) =

p(D) [, p(Djw)p(w’)dw



BAYESIAN NEURAL NETWORKS: A TUTORIAL 28

BAYESIAN DEEP LEARNING: CHALLENGES

Bayesian inference for deep neural networks is extremely challenging

» Posterior is intractable Is the likelihood correct?  Probably

» Millions of parameters What do these parameters mean?
Care about functions instead

4 Large datasets Can we run MCMC for 1 million steps on ImageNet??
We don’t need to

» Unclear which priors to use Is the prior correct?
Probably

P\w —

p(D) [, p(Djw)p(w’)dw
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BAYESIAN DEEP LEARNING: CHALLENGES

Bayesian inference for deep neural networks is extremely challenging

» Posterior is intractable Is the likelihood correct?  Probably

» Millions of parameters What do these parameters mean?
Care about functions instead

4 Large datasets Can we run MCMC for 1 million steps on ImageNet??
We don’t need to

» Unclear which priors to use Is the prior correct?
Probably

P\w —

p(D) [, p(Djw)p(w’)dw
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HOW CAN WE DO APPROXIMATE BAYESIAN INFERENCE?

Posterior Approximation:
> Laplace Approximation
» Variational Inference

» Markov Chain Monte Carlo

» Geometrically Inspired Methods

There's no one best method - use the method bestjadapted to the problem
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LAPLACE APPROXIMATION

Approximate posterior with a Gaussian N(w|u, A_l)
» W = WaprAP mode (local maximum) of p(’w\D)

» A= —VVlog[p(D|w)p(w)]

» Only captures a single mode .

0.3 A
0.2

0.1 A




BAYESIAN NEURAL NETWORKS: A TUTORIAL 33

LAPLACE APPROXIMATION

Approximate posterior with a Gaussian N(w|ﬂ, A_l)
» W = WaprAP mode (local maximum) of p(wID)

» A= —VVlog[p(D|w)p(w)]

» Only captures a single mode .

» Is a single mode a
bad thing?

0.2 -

0.1 A
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LAPLACE APPROXIMATION

Approximate posterior with a Gaussian N(w|ﬂ, A_l)
» W = WaprAP mode (local maximum) of p(wID)

» A= —VVlog[p(D|w)p(w)]

» Only captures a single mode .

» Is a single mode a
bad thing?

0.2 -

0.1 A
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LAPLACE APPROXIMATION: DEEP LEARNING

Approximate posterior with a Gaussian N(w\u, A_l)
» W = WaprAP mode (local maximum) of p(w\D)

> Approximate A with a KFAC (tri-diagonal) — Ritter et al., 2018a

» Application: Catastrophic forgetting | WnmAP
(Ritter et al, 2018b)

04 A

» Originally from Mackay, ‘92 03 |

0.2 A

0.1 A
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VARIATIONAL INFERENCE

We can find the best approximating distribution within a given family with
respect to KL-divergence

K L(qllp) = /

w

w ) 10 Q(w) w
q(w)] gp(wID)d

» If ¢ =N(u,X), then mi§1KL(q||p)'
M, 04 -

0.2 -

0.1 A
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VARIATIONAL INFERENCE

We can find the best approximating distribution within a given family with
respect to KL-divergence

' KL(allp) = [ atw)log 2 v

» Stochastic variational inference (Hoffman et al, 13, Kucelkibir, et al, ‘17, Graves, 2011)
ELBO(w) = Eq(w)(logp(Plw)) — KL(g(w)||p(w))
Traditionally... q(w) — _/\/‘(qu7 0'22)

» Minimizing the KL divergence is “consistent” statistically (Wang & Blei, '19) &
optimal in other settings (Knoblauch, et al, '19)

» Can somewhat evaluate if it works (Yao, et al, '18)
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VARIATIONAL INFERENCE: DEEP LEARNING (2)

We can find the best approximating distribution within a given family with
respect to KL-divergence

» KL(gllp) = |

w

q(w)
(D)™

g(w) log
(w) 5
» Other bounds exist...

» Chi-Square (Dieng, et al, '17), F-divergences (Wang, et al, '17), Perturbative divergences
(Bamler et al, "17), VPNG (Tang & Ranganath, '19)

> Better approximation distributions....

» Matrix-variate Gaussians (Louizos, et al, '16), Normalizing flows (Louizos, et al, '17),
Bayes by Backprop (Blundell, et al, 16)
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VARIATIONAL INFERENCE: DEEP LEARNING (3)

We can find the best approximating distribution within a given family with
respect to KL-divergence

» KL(gllp) = |

w

q(w) .
(wD)"

g(w) log
(w) 5
» Other bounds exist...

» Renyi-divergences (Li & Turner, '16), robust divergences (Futami, et al, '17), operator
divergences (Ranganath, et al, 16), etc...

> Better approximation distributions....

» Implicit distributions (Tran, Ranganath, Blei, ‘17), GANs (Huszar, ‘17), boosting (Miller et
al, "17), smoothed dropout (Gal, et al, '17), etc....
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VARIATIONAL INFERENCE: DEEP LEARNING

We can find the best approximating distribution within a given family with
respect to KL-divergence

» KL(gllp) = |

w

q(w)
(D)™

) DI‘OpOUt at test time (Gal & Ghahramani, ‘15, Gal & Ghahramani, ‘16, Gal, ‘16, Gal & Li, "17)

» q(w) = Bernoulli(p)N (u;, o)

g(w) log
(w) 5

» KL un-defined so it's actually minimizing a quasi-KL divergence...
(Hron et al, '18)
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VARIATIONAL INFERENCE: DROPOUT

> Applications of dropout

» Segmentation for autonomous driving(Kendall & Gal '17)

(a) Input Image (b) Ground Truth ~ (c) Semantic
Segmentation

From Kendall & Gal

(d) Aleatoric
Uncertainty

0.1 - 5 0.1F

O. 1 1 L 1 0. 1 1 1 1
%.0 0.2 04 06 08 1.0 %‘0 0.2 04 06 08 1.0
p(diseaselimage) p(disease|image)

(a) Correctly classified test images (b) Erroneously classified test images

Figure 4: Relation between predictive uncertainty (i.e. entropy), Hpred, of MC Dropout model, and
maximume-likelihood, i.e. sigmoid probabilities p(disease|image). The model has higher uncertainty
for the miss-classified images, hence it can be used as an indicator to drive referral.

From Filios et al, 2019

» Segementation for clinical applications
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VARIATIONAL INFERENCE: DEEP LEARNING (8)

We can find the best approximating distribution within a given family with
respect to KL-divergence

 KL(allp) = [ atw)log 2 v

» Variational interpretations of stochastic optimization....

» Early stopping (Duvenaud, et al, '16)
» Constant SGD (Mandt, Hoffman, Blei, ‘17) [more later]

» Adam (Khan et al, ‘18, Osawa et al, '19)

» Natural Gradient descent (Zhang et al, '18, Bae et al, 19)

» MCMC (Hoffman & Ma, '19)
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MARKOV CHAIN MONTE CARLO

39

We can produce samples from the exact posterior by defining specific

Markov Chains

» Software packages:
» Stan, PyMC4, Pyro

> Langevin dynamics (SGLD) (Neal ‘93,
Welling & Teh, '11)

» Hamiltonian dynamics

» Neal, '95, '96

0.5 A

04 A

0.3 A

0.2 A

0.1 A

» Stochastic version - Chen etal, ‘14

@ O oL@ @

A

N\

MCMC samples

p(w|D)
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CYCLIC SGMCMC (ZHANG ET AL, ICLR 2020) https://github.com/ruqizhang/csgmcmc

» Run stochastic Hamiltonian Monte
Carlo with a cyclic learning rate

-=-= Exploration Stage —— Sampling Stage —— Decay Stepsize
o0 LA A B R ° . . .
0.08 ' \\ \\ ' R B B B ] ] . » .
g oo \ \ \ TEEE RN I
&% 0.04 ‘" E B . ’
0.02 ‘ ‘ ‘ ‘ ‘ ° S » )
000 ~ ~ - (a) Target (b) SGLD (c) cSGLD
0 25 50 75 100 125 150 175 200
Epochs
’ Figure 2. Sampling from a mixture of 25 Gaussians shown in (a)
_ . . _ for the parallel setting. With a budget of 50k x 4 =200k samples,
Figure 1. Illustratlf).rl of the prop.osed cyc.hcal stepsize schedule traditional SGLD in (b) has only discovered 4 of the 25 modes,
(red) and the traditional decreasing stepsize schedule (blue) for while our cSGLD in (c) has fully explored the distribution.

SG-MCMC algorithms.

Converges faster to the posterior than standard SGHMC in terms of Wasserstein distance
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BASED OFF OF

» "A Simple Baseline for Bayesian Uncertainty in Deep
Learning,” Maddox, Garipov, Izmailov, Vetrov, Wilson,
https://arxiv.org/abs/1202.02476, NeurlPS, 2019

» Code: https://github.com/wjmaddox/swa_gaussian

» “Subspace Inference for Bayesian Deep Learning,”
Izmailov, Maddox, Kirichenko, Garipov, Vetrov, Wilson,
https://arxiv.org/abs/1907.07504, UAI, 2019.

» Code: https://github.com/wjmaddox/drbayes



https://arxiv.org/abs/1902.02476
https://github.com/wjmaddox/swa_gaussian
https://arxiv.org/abs/1907.07504
https://github.com/wjmaddox/drbayes
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LOSS SURFACES: WHY DO WE CARE?

> Better approximate Bayesian Inference

o loss = — logp(w|D) , so understanding loss surfaces is crucial for
approximate Bayesian inference

V|sua||zat|ons created by JaV|eLIdeam|

.’/‘/ N

More great visualizations available at https: //Iosslandscaloe com/



https://losslandscape.com/
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SGD AS APPROXIMATE BAYESIAN INFERENCE - MANDT ET AL, JMLR, 17

» SGD with isotropic noise follows the
shape of the posterior

x 10!

——— PreResNet110 - Scratch
——— PreResNet110 - SWA
—— VGG16 - Scratch

— VGG16 - SWA

» Assumptions of analysis don't quite
hold for DNNs

Optimal Learning Rate

» But... we can use the same idea to

approximate the posterior for DNNs L




STOCHASTIC WEIGHT AVERAGING GAUSSIAN (SWAG)- MADDOX ET AL, NEURIPS, '19

75% training

-~ -

v

Learning Rate

Approximate

Pretrainin
& with Gaussian

Training Epoch




SWAG

75% training

-~ -

v

Learning Rate

Approximate

Pretrainin
& with Gaussian

Training Epoch

Produced in collaboration with Javier Ideami




SWAG

75% training

Learning Rate

~ >

v

Approximate

Pretrainin
& with Gaussian

Training Epoch

@

—>.

Compute Average

Sample models predictions predictions

Produced in collaboration with Javier Ideami




BAYESIAN NEURAL NETWORKS: A TUTORIAL 47

SWAG - EMPIRICAL MOTIVATION

Train loss Train loss
PreResNet-164 CIFAR-100 PreResNet-164 CIFAR-100
80

60

40

>5
5
19
0.75

- 0.34

20

AN

- 0.19

- 0.14
I 0.12
0.1

-20

—40

—-60

—~80 .
-80 -60 40 -20 0 20 40 60 80 —40 20 0 20 40

Vi V3
* SWA  — - SWAG 30 region  —— Trajectory (proj) * SWA — = SWAG 30 region —— Trajectory (proj)

U; | U;
ty - —2o)
luill s

Y(t1,t2) = L(Oswa + 11 -
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SWAG - CALIBRATION

DenseNet-161 ImageNet

0.10 ; —e— 5GD
> —eo— SWA-Temp
s 0.08 \ —e— SWAG
) .
S 005 - / e \ —o— SWAG-Diag
<
[ ——
c )
ﬁ 0.00 1 = - N — — = = — ==
“'g 0.03
U = .

0.05

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)
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SWAG - BAYESIAN MODEL AVERAGING

Dataset Model SGD SWA  SWAG-Diag SWAG KFAC-Laplace SWA-Dropout SWA-Temp
CIFAR-10 VGG-16 93.17 93.61 93.66 93.60  92.65 93.23 93.61
CIFAR-10 PreResNet-164 95.49  96.09 96.03 96.03  95.49 96.18 96.09
CIFAR-10 WideResNet28x10 96.41 96.46 96.41 96.32  96.17 96.39 96.46
CIFAR-100 VGG-16 73.15  74.30 74.68 74.77 7238 72.50 74.30
CIFAR-100 PreResNet-164 78.50 80.19 80.18 79.90 78.51 80.19
CIFAR-100 WideResNet28x10 80.76 82.40 82.40 82.23  80.94 82.30 82.40
ImageNet DenseNet-161 77.79 78.60 78.59 78.59 78.60
ImageNet ResNet-152 7839 78.92 78.96 79.08 78.92
CIFAR10 — STL10 VGG-16 72.42 71.92 72.09 72.19 71.45 71.92
CIFAR1I0 — STL10 PreResNet-164 75.56  76.02 75.95 75.88 76.02
CIFAR10 — STL10 WideResNet28x10 76.75 77.50 77.26 77.09 76.91 77.50

49
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SWAG - OUT OF SAMPLE DETECTION
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SUBSPACE INFERENCE FOR BAYESIAN DEEP LEARNING - 1zMAILOV, ET AL, UAL “19

https://github.com/wjmaddox/drbayes

Train loss Train loss

PreResNet-164 CIFAR-100 PreResNet-164 CIFAR-100

0.75
- 0.34

- 0.19

0.14
I 0.12
0.1

-80 -60 -—-40 -20 0 20 40 60 80 . —~40 -20 33 20 40
Vi
* SWA  — - SWAG 30 region  —— Trajectory (proj) * SWA  — - SWAG 30 region = —— Trajectory (proj)
Y
P(t1,t2) = L(Oswa + 11 - ” ” + g )
U;

||'UJ||

» Remember this plot?
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SUBSPACE INFERENCE

» SGD trajectory happens in a very

small Subspace PCA Trajectory Estimates of Eigenvalues

10 —e— CIFAR-10, VGG-16

CIFAR-10, PreResNet-164

CIFAR-100, VGG-16

—o— C(CIFAR-100, PreResNet-164
e

CIFAR-100 PreResNet-56

» Summarize the information from :
the trajectory in very low

dimensions

10t

100

Eigenvalues

» Also seen in Gur-Ari, etal, '19

101

102
0 20 40 60 80 100 120 140
Rank
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SUBSPACE INFERENCE

» A modular approach
» Design subspace

» Approximate posterior over parameters in that
subspace

» Sample from approximate posterior for bayesian model
averaging

We can approximate posterior of 36 million dimensional WideResNet
in 5D subspace and get state-of-the-art results!
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POSTERIOR CONTRACTION (REVISITED)

» If N >> p, can we even learn interesting distributions in p
dimensions?

Original Model Low Curvature Differences High Curvature Differences 1.05
: ” 7
e / / 0.90
10 10 A - 10 g '
% Vo Yol N 7~ @
o / ' ef -1 ! ) 0.75 2
:..:. I’ // . — -\‘ \\ l l/ ,',f' - %
Siu I oAy S A Y 0.60 £
0 " ... 0 | \ /,’, | 0 | \ /,’, ()]
D:..qg.o \ ~ " ’ ' I \ N " ’ O 45 ‘.G_)‘
%, R L~/ | R -
o Q{Q. - - - -
} VaKd / 1 | -0.30 &
P ] = . o]
-10 -10 — / -10 A <
I/ 015
-10 0 10 -10 0 10 -10 0 10 0.00

Modified Decision Boundary == = Qriginal Decision Boundary
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POSTERIOR CONTRACTION (REVISITED)

» If N >> p, can we even learn interesting distributions in p
dimensions?

Modified Decision Boundary

Probably not

== = Qriginal Decision Boundary

Low Curvature Differences High Cur}ature Differences 1.05
/
/! J 0.90
10 o /')\ ~ 10 7~ o)
¢ N -1 I )& 0.75 2
I S~ \ / 3 2
/ JooAaN N " 0.60 &£
0 \ \ -t 0 \ \ / ~ V4 o
\ SNy ! 4 \ SN 0452
X L~ /) | ] L "
— - [e)
- A | - 0.30 &
-10 — / -10 A <
/ 0.15
-10 10 -10 0 10 0.00
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CREATING THE SUBSPACE

» Choose shift @ and basis vectors {dy,--- ,dx}

» Define subspace S ={wlw=w+dyz1 +- d;@g}
» Likelihood

p(D|z) = pp(Dlw = @ + P2) /"
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CREATING THE SUBSPACE

» Choose shift @ and basis vectors {dy,--- ,dx}
» Define subspace S ={w|lw=w+di21 +- dKzg}
» Likelihood

p(D|z) = pp(Dlw = @ + P2) /"

T>>1:to increase prior
dependency & reduce
effect of likelihood
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INFERENCE IN THE SUBSPACE
» Approximate inference over parameters
» MCMC, VI, Normalizing Flows, ...

» Bayesian model averaging at test time

y p(D*|D) = ZpM (D*|w = + P%;),%; ~ q(2|D)
j 1

’1,2\]—'—?}1 _l_ D .,
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WHICH SUBSPACE? (RANDOM SUBSPACE)

» Random directions:  dy,---  dg ~ N(0, Ig)

» Use pre-trained solution as shift w

» Subspace S = {w|w =w+ Pz}

Predictive Distribution Posterior log-density
ESS, Random Subspace ESS, Random Subspace

< —0.055
—0.055
—0.042
—0.032
—0.025
—0.019

—0.015

—0.012

—0.0029
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WHICH SUBSPACE? (PCA OF THE SGD TRAJECTORY)

» Run SGD with high constant learning rate from a pre-trained solution

» Collect snapshots of weights w;
| T
» Use SWA solution as shift W= z; w;
1=
» {d1, - ,dg} —first K PCA components of vectors & — w;
Predictive Distribution Posterior log-density

ESS, PCA Subspace | ESS, PCA Subspace




BAYESIAN NEURAL NETWORKS: A TUTORIAL 61

WHICH SUBSPACE? (CURVES — GARIPOV ET AL, "18)

» Garipov et al, 18 proposed a method to find 2D
subspaces containing a path of low loss between weights

of two independently trained neural networks
arg m@in Eitr0,1)(L(Do(t)))
do(t) = (1 — )%y + 26(1 — )60 + %43

Predictive Distribution Posterior log-density
ESS, Curve Subspace ESS, Curve Subspace

< -5

-1.9
—0.76
—-0.3
—0.12

—0.047

—0.02

—0.003

-5 0 5 10 15 20 25 30
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WHICH SUBSPACE? (CURVES — GARIPOV ET AL, "18)

» Garipov et al, 18 proposed a method to find 2D
subspaces containing a path of low loss between weights
of two independently trained neural networks

Posterior Log-Density
NUTS, Curve Subspace

Predictive Distri
NUTS, Curve Su

ution
space

0 25 0.0 2.5 5.0 7.5 10.0
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RESULTS (PRERESNET164, CIFAR100)

PCA of the SGD trajectory

PCA Subspace

Posterlor Iog—den5|ty

Random Subspace
Posterior log-density

< -25

80
60 I
—6.1 20
-32 0 I :

N
—80
051 L | | | ||

-80 60 40 20 0 20 40 60 80

Curves: chaining ind. models (Garipov, et al, '18)

Curve Subspace
Posterior log-density

-18 05

-11 -1.0

—-038 -15

-051  _2p
-20 -15 -10 -0

© ESS =— = SWAG 30 region = = VI 30 region © ESS
SGD Random PCA Curve
NLL 0.946 £ 0.001 0.686 £ 0.005 0.665 £ 0.004 0.646
Accuracy (%) 78.50 = 0.32 80.17 £0.03 80.54 +0.13 81.28
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RESULTS - REGRESSION

ESS, PCA Subspace ESS, Random Subspace

-100 -75 -50 —25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100

ESS, Curve Subspace RBF GP

Gold standard on
regression tasks

-100 —-75 =50 -25 00 2.5 5.0 7.5 10.0
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BAYESIAN DEEP LEARNING: CHALLENGES

Bayesian inference for deep neural networks is extremely challenging

» Posterior is intractable Is the likelihood correct?  Probably

» Millions of parameters What do these parameters mean?
Care about functions instead

4 Large datasets Can we run MCMC for 1 million steps on ImageNet??
We don’t need to

» Unclear which priors to use Is the prior correct?
Probably

P\w —

p(D) [, p(Djw)p(w’)dw
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BAYESIAN DEEP LEARNING: SUCCESSES

» But it doesn’t mean we shouldn't try...

(a) Input Image (b) Ground Truth  (c¢) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

Again from Kendall & Gal, “What Uncertainties do we need for bayesian deep learning for computer vision?”
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BAYESIAN DEEP LEARNING: PRIOR CHOICE

» Typically use a iid Gaussian prior N (0,a?I)

90%  E—R T 0~ PreResNet-20
» Choices may not be adversarial... o ek
L T eight Decay
‘é 20% E
2 b E
O 10% WD
» But also not fantastic... . ,
a=1
Prior parameter sample 1 Prior parameter sample 2 102 101 10°
1.0 — 1.0 Prior std o

B Train set class distribution I Train set class distribution

1 2 3 4 5 6 7 8 9 10

Figure 10g of Wilson & Izmailov ‘20
https://arxiv.org/pdf/2002.08791.pdf

Class probability
o
w

©
o

Class probability
o
u

©
o

1 2 3 4 5 6 7 8 9 10
Figure 7. ResNet-20/CIFAR-10 typical prior predictive distributions for 10 classes under
a N (0, I) prior averaged over the entire training set, E, () [p(y|z, 69)]. Each plot is
for one sample 8) ~ N/ (0, I') from the prior. Given a sample 0 the average training
data class distribution is highly concentrated around the same classes for all x.

Figure 7 of Wenzel et al, ‘20 https://arxiv.org/pdf/2002.02405.pdf
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BAYESIAN DEEP LEARNING: COMPARISONS

Method Accuracy | Calibration | Train time | Test time Code
Kt
Ensembles high Often more statrlwrdn:rsd K times Train K
(Lakshminarayanan 9 overconfident . slower models
etal,’17) training
Slightl
Swa e Less Standard K times Store models
9 better than i . . A
(Maddox et al, “19) overconfident | training slower at train time
MAP
Appl
Dro pout About the Slightly less Standard K times PPTY
: . . dropout at
(Gal & Gharamani,"16) | same as MAP |overconfident training slower .
test time
Slightly
L 2x standard K ti
VOGN worse than ess. e an o mes Modify Adam
(Osawa et al, "19) overconfident training slower

MAP?*
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BAYESIAN DEEP LEARNING: COMPARISONS

Method Accuracy [Calibration | Train time | Test time Code
K ti
Ensembles hiah Often more starllr;aersd K times Train K
(Lakshminarayanan 9 overconfident . slower models
etal,’'17) training
Slightl
Swag 'ty Less Standard K times Store models
better than . . . e
(Maddox et al, "19) MAP overconfident | training slower at train time
Appl
Dro pout About the Slightly less Standard K times PPTY
: . . dropout at
(Gal & Gharamani,"16) | same as MAP |overconfident training slower .
test time
Slightly
L 2x standard K ti
VOGN worse than ess' e an o mes Modify Adam
(Osawa et al, "19) MAP?* overconfident| training slower

*: see figure 4, table 1 of Osawa et al, 19 (https://arxiv.org/pdf/1906.02506.pdf)
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QUESTIONS?

Slides at https://wjmaddox.github.io/assets/BNN_tutorial_CILVR.pdf
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